Search results for "pseudo-marginal algorithm"

showing 2 items of 2 documents

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance

2017

We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…

Statistics and ProbabilityFOS: Computer and information sciencesdelayed-acceptanceMarkovin ketjut01 natural sciencesStatistics - Computationasymptotic variance010104 statistics & probabilitysymbols.namesake60J22 65C05unbiased estimatorFOS: MathematicsApplied mathematics0101 mathematicsComputation (stat.CO)stokastiset prosessitestimointiMathematicsnumeeriset menetelmätpseudo-marginal algorithmApplied Mathematics010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte CarloCovarianceInfimum and supremumWeightingMarkov chain Monte CarloMonte Carlo -menetelmätDelta methodimportance samplingModeling and SimulationBounded functionsymbolsImportance samplingMathematics - Probability
researchProduct